一、高中数学平面直角坐标系下的图形变换及常用方法(论文文献综述)
陈晓娅[1](2021)在《高中生三角函数概念理解水平调查研究》文中进行了进一步梳理三角函数在高中数学课程中占据重要地位,是高考重点模块,同时在基本初等函数中三角函数是具备最多函数性质的一类函数,且三角函数概念为学好三角函数奠定基础,因此学好三角函数概念至关重要。学生对三角函数概念的理解是有一定水平的,并且处于各个水平阶段的学生所面临的问题各不相同,比如处于低理解水平阶段的学生面临的学习难点与高理解水平阶段学生面临的学习难点有所不同,那对应的教学手段就应该有所差异.在这样背景之下,最终确立研究问题为:(1)基于SOLO分类理论研究高中生三角函数概念理解处于何种水平阶段以及于各理解水平学生的分布情况如何?(2)每种理解水平下的高中生对于学习三角函数概念存在的具体难点是什么?(3)根据SOLO分类理论研究之后,教师在教授三角函数概念一课时应该如何做才能解决学生存在的难点?有什么好的建议?为了解决上述研究问题,编制《高中生三角函数概念理解水平测试卷》进行测试,按照SOLO分类理论划分的标准对测试卷进行打分,分析数据,确定学生理解水平,之后按照不同理解水平段对学生进行访谈,了解学生具体的学习难点。与此同时,结合《数学学习非智力特征调查问卷》了解高中生在数学学习上的非智力因素,探求到高中生数学学习的特点,最终得到如下结论:(1)三角函数概念理解水平整体偏低,特别是三角函数综合性应用理解水平偏低。(2)男女生理解水平差异均明显。(3)学生学习三角函数的困难与现状:疑惑单位圆引入,导致接受程度不高;混淆三角函数定义法,导致解题思绪不清;缺乏函数关系理解,导致三角函数认识浮于表面;低估三角函数线的优势,导致三角函数线应用范围狭窄;欠缺知识系统化能力,导致相关知识割裂。(4)教师三角函数概念教学的困难与现状包含两个方面:一是如何让学生有效接受单位圆定义法;二是如何处理终边定义法。(5)非智力因素方面,高中生数学学习的外部动机、情绪稳定性、学习效能感、坚持性这几方面对于学生学习数学的影响最为明显。基于以上研究结论,提出七方面十二条教学建议:(1)巧用工具,详略得当,解决三角函数定义教学难点:(a)融入三角函数发展史,消除单位圆突兀疑惑;(b)取舍三角函数定义法,解决学生混淆定义问题;(c)阐述函数对应关系,揭示三角函数本质。(2)重视内容,熟知学情,解决三角函数线教学难点问题:(a)加强三角函数线教学,构建完整知识体系;(b)熟知学生认知规律,深入三角函数线画法证明。(3)因材施教,合理规划,解决差异性显着问题:(a)巧设互动问题与作业,因性别而提问;(b)洞悉学生理解水平,制定合理复习计划。(4)开展活动,控制难度,迎合学生数学学习特点;(5)阅读史书,追根溯源,明确单位圆意义;(6)专研教材,归纳总结,构建三角函数概念知识网络;(7)勤于练习,循序渐进,提高解决综合问题能力。
杜超[2](2021)在《高一三角函数迷思概念的诊断与转变策略的研究》文中研究指明概念是构成任何一门学科知识体系的基础。布鲁纳曾经提到:“一门课程,在它的教学进展中应反复地回到这些基本观念,以这些概念为基础,直至学生掌握了与这些概念相伴随的完全体系为止”。可见,任何学科的教学的出发点与落脚点必须衷于概念,数学学科亦是如此。科学研究及实践表明,学生在接受正式的科学教育之前,并非一张空白的白纸,受日常生活经验等因素的影响产生与概念主题相关的前概念,这些前概念与科学概念相比,有时是错误的、片面的,我们将这些与科学概念相异的概念统称为迷思概念。迷思概念具有顽固性,在一定程度上阻碍了教师的教学进度与教学质量,容易造成学生“听而不会”“会而不懂”的现象,所以在科学教育领域之中,概念转变教学一直都是研究的热点话题。结合笔者自身的实习经历以及与前辈们的课后交流,一致认为学生在学习过程中流露出来的“迷思”数不胜数,并且概念越是抽象、难以理解的学习内容迷思现象就越明显,比如“三角函数”这部分内容。三角函数作为高中最后一种特殊的函数,是连接几何与代数的桥梁,是高中数学体系中必不可少的内容。从课程角度分析,三角函数是研究周期现象的主要模型,并与后续所学的平面向量有着千丝万缕的关系。此外,三角函数在三角运算方面也具有重要的作用,数学家欧拉曾利用三角函数与指数之间的关系,扩大了复数函数的定义域,在复数论的领域中被誉为“数学的天桥”。同时,三角函数还与高中所学的正余弦定理紧密结合,能够求出三角形的角、面积等。基于以上原因,本文以“三角函数迷思概念”为主题,开展了如下的研究工作:第一,笔者阅读大量相关文献,结合国内外研究现状,确定本论文的研究理论依据:建构主义理论、皮亚杰认知发展理论、概念转变理论等等。第二,确定本论文的研究工具——二段式测量诊断工具。笔者严格遵循二段式测量工具的编制流程,对学生学习三角函数时存在的迷思概念进行实际探查,调查对象为哈尔滨某中学的高一学生,并借助问卷分析软件Spss22.0对问卷进行系统的分析,得出学生在三角函数的学习中持有的迷思概念。第三,基于问卷调查结果的分析,得出高中生在三角函数学习中存在很多迷思概念,而且迷思概念存在的原因是错综复杂的。第四,根据学生迷思概念的成因分析即研究理论依据,提出转变高中生三角函数迷思概念的教学策略。即数学史教学策略、概念图教学策略、先行组织者教学策略、问题驱动教学策略。
程旭[3](2021)在《启发式教学在平面向量课堂教学中的应用》文中研究说明启发式教学一直是经久不衰的话题,其主要目的是培养学生自主创新和独立思考的能力,由于素质教育改革的不断深化,启发式教学成为教育改革的一个重点.启发式教学强调教师的循循诱导与学生的思维扩展相结合,一堂课不仅要让学生学会知识内容,还要为学生开阔一种新的思维方式.启发式教学在数学教学中有着更加重要的应用,高中是学生建立数与形数学思维的重要时期,也是训练学生独立发现问题,解决问题的重要时期,所以本文以启发式教学思想的理论为基础,结合平面向量的课堂教学内容,探讨启发式教学如何应用于教学中.启发式教学思想必须渗透到实际的课堂中,才能发挥其作用.教师要结合学科特点,明确这节课启发的是什么,训练的是哪种数学思维,以及如何启发.数学是要求学生建立逻辑思维的科学,平面向量结合高中两大门类数与形,对学生建立数形结合能力,数形转化能力,计算能力,抽象思考能力等都有很大的帮助.本文主要包含以下五部分.第一章为绪论部分.第二章介绍了启发式教学思想的相关内容,包括启发式教学的概念,特征,理论依据和研究意义.第三章的主要内容是在所实习学校高二年级分发了调查问卷,对实习学校的4位老师进行了实际访谈,主要关于启发式教学思想在高中课堂的教与学的应用现状,得出了这样的结论:由于高中课堂教学任务重,教师上课时应该抓住契机,有效实施启发式教学;启发式教学的应用可以扩展学生数学思维;学生在学习向量时数形结合能力有待提高.第四章是基于调查与分析结果,结合平面向量的知识,本文试图从教师的教学角度出发,结合启发式教学的应用策略,寻找合适的向量教学内容,完成启发式教学在平面向量中的实际应用,并通过教学策略的实施总结在平面向量教学课堂中应用启发式教学的意义.最后是综合全篇论文得到的结论,启发式教学可以应用于一堂课的课前准备阶段,在课堂教学中引入新课、新课讲解、课后总结,课堂结束后的课后反思等多个教学环节中,对于不同的教学环节,启发式教学思想都有着不同的作用。
贾艳艳[4](2021)在《初中生数形结合能力水平的调查研究》文中提出现阶段我国提倡能力为本的素质教育,发展学生的创新意识和学科能力已经成为基础教育面临的重要任务。数形结合思想有利于学习迁移,关注学生数形结合能力水平的提升,能够有效促进发散思维和创新思维的发展。然而,一线教师却普遍反映学生数形结合能力不高,存在很多问题。因此,调查分析初中生数形结合能力发展的现状水平以及存在的突出问题,提出有针对性的教学策略,对于教师因材施教,帮助不同学生提升数形结合能力就有了重要的现实意义。该研究主要采用文献分析法、问卷调查法、定量分析法和试卷分析法,针对初中生数形结合能力进行了理论研究,界定了其特有的内涵,并构建了包含三个维度、三个水平的能力测评框架。以此为依据编制了测试题和调查问卷,通过实证研究,得到以下结论:(1)初中生在数形结合能力上总体表现一般,仍存在较大的提升空间。17%的学生位于水平零;16.6%的学生处于水平一;26.7%的学生处于水平二;39.7%的学生处于水平三。(2)初中生数形结合能力水平在性别上不存在显着性差异,但在不同等级学校间总体上存在显着性差异。女生在对数形结合能力要求不高、难度不大的问题情境中表现良好,而面对综合型问题情境时表现不如男生。省级示范性中学的数形结合能力水平高于普通学校。同时,发现初中生在数形结合能力表现上存在着一些突出问题:(1)理解题意偏差;(2)迁移思维受阻;(3)创新探究固化。结合学生在数形结合能力上的表现,建议一线教师从以下几个方面加强教与学:(一)加强几何表征,提高数形结合理解能力;(二)深度理解基础知识,提高数形结合迁移能力;(三)强化模型思想,提高数形结合创新能力;(四)以错题档案和课堂思考时间为切入点改善学与教。
荣媛媛[5](2021)在《高中生数形结合思想方法的应用现状研究》文中指出数形结合思想方法作为高中重要的数学思想方法之一,它对学生学习数学有着十分关键的作用,善用数形结合不仅可以帮助学生开阔思路,从更深层次理解知识,还可以获得解决问题的多种途径。本文在前人研究的基础上,结合课标要求及SOLO分类理论,设计了学生调查问卷、测试卷以及教师访谈,通过对数据的整理分析,笔者发现多数学生将数形结合看成是解题工具,没有上升到思想层面,学生整体对数形结合的应用意识不强,且在课下缺乏总结反思的习惯。在解题应用方面,学生总体在“以数解形”方面的能力比“以形助数”要好。从知识载体上看,学生在集合这一部分的数形结合能力最好,其次是平面向量、不等式和三角函数,再次是立体几何、解析几何、数列,应用最差的是函数。从年级上看,高三学生的数形结合应用水平比高二要好。学生在利用数形结合思想方法解题时,出现的主要问题为:无法转化属性表征、作图不准确、数形转化不等价等。根据学生的数形结合应用现状,笔者认为要想加强学生对数形结合的应用意识和能力,首先教师要更新教学观念,增强渗透数学思想的意识。其次教师就要重视在新授课上的渗透,挖掘教材中可用的数形结合教学素材,只有让学生认识到数形结合在知识内容的诸多方面都有广泛体现,学生才能逐渐将数形结合从解题方法上升为数学思想。第三,教师在教学时要注重数学三种语言的对应与转化,培养学生的数形转化意识。最后,教师要重视学生的作图和识图能力,学生作图能力弱,教师要多一些耐心,对学生出现的问题及时纠正,也要善用信息技术软件辅助教学。
张嫌[6](2021)在《九年级学生函数模块解题错误纠正研究》文中研究说明函数是探究运动变化的主要工具,通过数学建模解决实际问题,在数学各领域都有举足轻重的地位,对学生核心素养的养成也是必不可少的。由于学生在初中阶段首次接触变量,对函数知识的理解比较困难,无论是资优生还是潜能生在解答函数相关题目时都容易出现解题错误,且订正效果不佳。出于上述原因,本文将ACT-R理论应用于教学实践,希望在函数模块解题错误纠正方面获得一些教学启示。本文主要从以下几个问题展开研究:在实际教学过程中九年级学生函数模块解题错误的现状是怎样的;九年级学生在函数模块的解题错误有哪些类型;基于ACT-R理论解题错误纠正教学策略是什么。为了回答上述问题,本文通过文献法获取解题错误纠正策略研究现状,分析ACT-R理论的内涵,深入挖掘ACT-R理论对教学实践中解题错误纠正的启示。通过问卷调查法了解九年级学生对解题错误的认识,学生、老师对解题错误分类的认识,学生产生解题错误的原因,同时获知教师处理解题错误的方式等现状,进而分析初中阶段函数模块常见解题错误类型,根据调查结果,本文将其分为知识性错误、策略性错误、逻辑性错误、无意识错误四类。通过具体示例对四种类型解题错误进行剖析,并结合ACT-R理论提出相应的解题错误订正教学策略:精致练习策略、熟能生巧策略、迁移与理解策略、检验反思策略。为检验提出策略的有效性,将上述四种策略与常规纠错方式对比,展开实验研究,得出该策略在实际应用过程中具有有效性,具体表现在:该策略对学生数学成绩的提高、同类型错误的减少、解题错误订正习惯的养成、题后反思能力的形成具有一定的帮助作用。
张露露[7](2021)在《中国中学三角函数内容设置变迁研究(1950-2019) ——以人教版教科书为例》文中研究说明作为初、高中阶段数学的重点学习内容,三角函数不仅锻炼学生的函数思维,而且也是将数与形相结合的典范。1950-2019近70年来,伴随着8次教育改革,人民教育出版社发行了29套数学教科书(初中12套,高中17套)。现今,三角函数课程已逐渐系统化,内容编排亦较为完善,而发展是连续的,没有以往教科书的编写经验,就没有之后教科书的改进与优化。因此,本文对1950-2019年“人教版”初、高中数学教科书中三角函数内容的设置变迁进行梳理,研究其变迁特点,以期为今后教科书的编写提供借鉴。本文以1950年以来“人教社”出版的29套初、高中数学教科书中三角函数内容为主要研究对象,以数学课程标准(教学大纲)为背景,运用文献研究法、比较研究法和统计分析法对29套教科书中三角函数内容的变迁进行分析,分别从三角函数定义与相关概念、三角函数的图象与性质、诱导公式、三角函数式的变换、应用(正、余弦定理、例题和习题)以及三角函数章节数学史融入六个方面对1950-2019年间人教版29套中学数学教科书(初中12套,高中17套)中三角函数的变迁进行宏观和微观研究。在占有丰富原始文献的基础上,展现新中国成立70年来中国教科书中三角函数内容的演变过程,更好地掌握三角函数内容,为他人学习和研究数学教科书中的三角函数内容提供参考,并以期为中国数学教科书的建设提供借鉴。本文得到如下结论:在三角函数宏观研究上,得出结论:(1)教学目标逐渐具体优化;(2)三角函数所属领域反复变化;(3)课程内容削枝强干。在三角函数微观研究上,得出结论:在三角函数定义与相关概念的内容设置变迁方面:(1)注重内容的完整性;(2)强调教学内容的简洁性。在三角函数的图象与性质内容设置变迁方面:(1)内容设置从被动接受逐渐转向自主探究;(2)强调三角函数图象与性质的主体地位倾向。在诱导公式内容设置变迁方面:(1)从“分散”到“集中”;(2)公式的证明由直观感知逐渐偏向于逻辑论证。在三角函数式的变换内容设置变迁方面:(1)由记忆应用到推理运用;(2)探究证明过程中思维的经济化倾向。在初、高中例题与习题变迁方面:(1)例题、习题设置呈现多类型、多方式编排;(2)根据教学大纲(课程标准)与时代变化设置;(3)以简单符号运算为主,注重运算能力的考查。在三角函数章节中数学史融入变迁方面:(1)按照教学大纲(课程标准)的要求编写;(2)编排位置由开篇到节末;(3)内容由总括到具体;(4)由爱国主义过渡到多元文化。
胡雨[8](2020)在《八年级学生几何直观能力的现状调查及培养策略研究 ——以天水市YF中学为例》文中研究表明随着数学课程的不断改革,从“直观教学”在教学大纲中出现,到成为核心概念之一,再到与空间想象组成“直观想象”成为学生数学六大核心素养之一。几何直观既表现出一种能力又表现出一种核心素养,可见其在当前教育背景下的重要性。在当前的相关研究中,对于几何直观能力的含义、在小学阶段的问题解决、教学策略方面的关注较多,虽然相关测评的研究有了较多的研究和进展,但是对于中学生的几何直观能力的研究还不够深入,导致在几何直观能力测评和评价等方面缺乏一些实践研究结果作为支撑。基于上述思考和对相关文献的梳理,本研究选择张和平小学生几何直观能力测评模型中的测评指标编制八年级学生几何直观能力测试题,采用文献分析法、教育测试法、访谈法和课堂观察法,对甘肃省天水市YF中学八年级280名学生进行测评。通过描述性统计分析测试结果,并结合对部分被测试学生访谈和数位教学经验较丰富的教师访谈结果分析,得出学生在几何直观能力形成过程中的障碍主要有:(1)学生图感低;(2)对代数知识几何背景不重视;(3)学生分析能力不强;(4)学生缺少对直观模型的发现、理解、记忆;(5)教师培养学生几何直观能力意识淡薄。最后总结出八年级学生几何直观能力的现状:(1)八年级学生几何直观能力处于中等水平;(2)八年级学生对图形的认识能力较强;(3)八年级学生利用图形分析问题能力偏弱。在一些专家和老师的理论研究成果与实践经验的基础上,本研究提出培养学生几何直观能力的策略有:(1)注重作图、识图、构图训练,培养学生图感;(2)强化实践操作,培养学生空间观念;(3)注重一题多解,发展学生分析能力;(4)渗透数学文化,增加教学趣味性;(5)重视几何直观观念,更新教学理念。
邓艳梅[9](2020)在《中小学数学螺旋式上升内容的比较与分析》文中研究表明教材编排有两种常用的方式,分别是直线式和螺旋式,一直以来,这两种方式在教材内容的编排中受到争议.有的人认为采用直线式编排更为合理,却没有考虑到学生在每个阶段的认知水平是有差异的;有的人认为采用螺旋式更为合理,却没有考虑到有的内容是不需要多次重复出现的,有的内容尽管需要重复出现,但不仅仅是简单的内容重复,而是需要在知识的深度和广度上得到上升.为了避免出现前面两个极端,思考什么样的内容适合直线式,什么样的内容适合螺旋式,在教材编排中如何充分去体现这两种编排方式的效果,这是我们需要研究的方向.新中国成立以后,螺旋式被广泛的运用到了数学教材的编写当中,通过查阅文献可以发现,几乎没有人完整的对当前教材中按螺旋式上升方式编排的内容进行研究,因此这也是本文选题的原因,以数学人教A版为例,罗列中小学数学中按螺旋式上升方式编排的内容,指出这些内容在哪些学段进行了螺旋,每一次螺旋中呈现的具体内容是什么?比较前后螺旋中的知识内容在深度和广度上是否有所上升,分析这样的编排是否合理.研究结果表明:(1)真正适合和体现知识的螺旋式上升的内容有14处,分别是长(正)方体、球、长(正)方形、圆、梯形、平移、坐标系、函数、直线、圆的位置关系、不等式、抛物线、双曲线、面和指数幂.(2)应该采用螺旋式上升方式编排,但在编排过程中并没有完全体现知识的螺旋式上升,需要进一步修改的内容有11处,分别是圆柱(锥)、平行四边形、三角形、角、垂直、三视图、扇形、根式、方差、距离和平行.(3)教材按螺旋式上升方式编排,而实际需要按直线式编排的内容有9处,分别是轴对称图形、旋转、集合、统计图表、平均数、概率、中位(众)数、简单随机抽样和命题.最后,根据研究的结果,提出了相应的建议,这些建议或许对今后的数学教材改革提供思考的方向.
方玉泉[10](2020)在《数学构造思想方法的理论探索与现状调查》文中认为数学是一门注重能力和方法的科学,数学思想方法是数学科学的灵魂,中学阶段数学的学习、教学和问题解决都离不开数学思想方法的指导.构造思想方法是一类通过构造新的数学对象来解决数学问题的思想方法,在数学科学中的地位十分重要.掌握和应用构造思想方法对教师的教和学生的学都有显着的积极作用.基于这样的背景,展开对构造思想方法的理论探索,了解学生构造素养的现状,是促进师生掌握和应用构造思想方法的重要环节.研究以构造思想方法为核心,从理论和实践两个方面,利用多种研究方法开展.研究围绕以下几个内容进行:(1)对构造思想方法的解题理论与教学理论进行探索;(2)对中学生构造素养的现状展开调查;(3)对中学生构造素养的影响因素进行分析;(4)对师生在教与学中应用构造思想方法的问题提出建议.研究的方法包括文献分析法、问卷调查法、个案分析法和分析综合法.在理论上,充分查阅大量关于构造思想方法的文献,结合对构造思想方法的理解与认识,深入探索了构造思想方法解题与教学的理论,不仅提出了构造思想方法解题的特点、原则和策略,教学的意义与原则,还对解题策略的维度进行划分,并对各二级维度之间的关系加以研究.在实践上,编制了用于调查中学生构造素养的测试卷,并制定了与之匹配的评价标准和访谈提纲,择期在国内两所中学实施测试,并利用相关软件对测试的结果展开了多个角度的统计与分析,还对三个不同水平的学生进行访谈和个例分析.得出的结论在实践方面表现为学生整体上利用构造法解题的表现较为一般,学生的构造素养受学校和性别的影响较大,受成绩水平的影响较小,学生对构造思想方法的了解不足,认知的途径比较单一,意愿比较平淡.最后基于上述研究结论,分别提出针对学生和教师的建议,并且对研究的不足与展望进行总结.
二、高中数学平面直角坐标系下的图形变换及常用方法(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、高中数学平面直角坐标系下的图形变换及常用方法(论文提纲范文)
(1)高中生三角函数概念理解水平调查研究(论文提纲范文)
摘要 |
abstract |
1 绪论 |
1.1 问题提出 |
1.1.1 实现课程改革的迫切需要 |
1.1.2 揭示三角函数概念教学重要地位的需要 |
1.1.3 化解三角函数概念教学困难的需要 |
1.2 核心概念界定 |
1.2.1 三角函数概念——单位圆定义法 |
1.2.2 三角函数概念——终边定义法 |
1.2.3 三角函数线 |
1.2.4 数学理解 |
1.3 研究意义 |
1.3.1 理论意义 |
1.3.2 实践意义 |
1.4 研究思路 |
1.5 研究方法 |
1.5.1 文献分析法 |
1.5.2 调查研究法 |
1.5.3 统计分析法 |
1.6 研究重点、难点、创新点 |
1.6.1 重点 |
1.6.2 难点 |
1.6.3 创新点 |
1.7 论文结构框架 |
2 文献综述与理论基础 |
2.1 文献综述 |
2.1.1 三角函数概念的研究现状 |
2.1.2 数学理解水平的研究现状 |
2.1.3 文献述评 |
2.2 理论基础 |
2.2.1 SOLO分类评价理论 |
2.2.2 APOS理论 |
3 高中生三角函数概念理解水平的研究设计 |
3.1 《高中生三角函数概念理解水平测试卷》设计 |
3.1.1 测试目的 |
3.1.2 测试对象 |
3.1.3 测试工具 |
3.1.4 数据处理 |
3.2 《高中生数学非智力特征调查问卷》使用设计 |
3.2.1 调查目的 |
3.2.2 调查对象 |
3.2.3 调查工具 |
3.2.4 数据处理 |
3.3 访谈设计 |
3.3.1 访谈目的 |
3.3.2 访谈对象 |
3.3.3 访谈提纲 |
4 高中生三角函数概念理解水平的研究结果与分析 |
4.1 《高中生三角函数概念理解水平测试卷》的研究结果与分析 |
4.1.1 三角函数概念维度研究结果与分析 |
4.1.2 三角函数符号问题维度研究结果与分析 |
4.1.3 三角函数线维度研究结果与分析 |
4.1.4 三角函数概念综合性问题维度的研究结果与分析 |
4.2 《数学学习非智力特征调查问卷》的研究结果与分析 |
4.2.1 高中生非智力因素整体情况分析 |
4.2.2 高中生非智力因素具体情况分析 |
4.3 访谈结果与分析 |
4.3.1 教师访谈结果 |
4.3.2 教师访谈结果分析 |
4.3.3 学生访谈结果 |
4.3.4 学生访谈结果分析 |
5 结论、建议与展望 |
5.1 研究结论 |
5.1.1 概念理解水平整体偏低,特别是综合性应用理解水平偏低 |
5.1.2 男女生理解水平差异均明显 |
5.1.3 教师教授三角函数的困难与现状 |
5.1.4 学生学习三角函数的困难与现状 |
5.1.5 非智力因素的影响不容忽视 |
5.2 高中三角函数概念教学建议 |
5.2.1 巧用工具,详略得当,解决三角函数定义教学难点问题 |
5.2.2 重视内容,熟知学情,解决三角函数线教学难点问题 |
5.2.3 因材施教,合理规划,解决差异性显着问题 |
5.2.4 开展活动,控制难度,迎合学生数学学习特点 |
5.2.5 阅读史书,追根溯源,明确单位圆重要意义 |
5.2.6 专研课本,归纳总结,构建三角函数概念知识网络 |
5.2.7 勤于练习,循序渐进,提高解决综合问题能力 |
5.3 研究不足与展望 |
5.3.1 研究不足 |
5.3.2 研究展望 |
参考文献 |
附录 |
附录1:《高中生三角函数概念理解水平测试卷》 |
附录2:《数学学习非智力特征调查问卷》 |
附录3:教师访谈提纲 |
附录4:学生访谈提纲 |
致谢 |
(2)高一三角函数迷思概念的诊断与转变策略的研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
一、研究背景 |
(一)概念转变在科学教育中的历史背景 |
(二)掌握正确的数学概念对发展学生核心素养至关重要 |
(三)三角函数在高中数学课堂的地位及作用 |
二、研究意义 |
(一)概念转变是构建科学概念体系前提 |
(二)有助于教师提高概念教学效率 |
(三)有助于学生数学学习 |
三、研究目的与方法 |
(一)研究目的 |
(二)研究方法 |
四、研究流程 |
第二章 相关文献综述 |
一、相关概念界定 |
(一)科学概念 |
(二)数学概念 |
(三)迷思概念 |
二、国内外迷思概念综述 |
(一)国外关于迷思概念研究 |
(二)国内关于迷思概念研究 |
(三)国内学生学习三角函数认知障碍的调查研究结果 |
(四)文献综述小结 |
三、相关理论研究 |
(一)认知建构理论 |
(二)奥苏伯尔有意义学习理论 |
(三)认知发展理论 |
(四)概念转变理论 |
第三章 三角函数迷思概念的调查设计 |
一、研究对象 |
(一)半开放式问卷施测对象 |
(二)访谈对象 |
(三)二段式问卷施测对象 |
二、问卷的编制 |
(一)二段式测验 |
(二)高中三角函数迷思概念二段式问卷诊断内容 |
(三)发展概念图 |
(四)半开放问卷的编制 |
(五)三角函数迷思概念访谈纲要 |
(六)三角函数迷思概念二段式问卷 |
三、资料整理分析 |
(一)半开放问卷测验结果分析 |
(二)抽样访谈资料分析 |
(三)二段式资料分析 |
第四章 三角函数迷思概念的调查结果及分析 |
一、三角函数迷思概念的调查结果 |
(一)教师访谈结果及分析 |
(二)半开放问卷分析 |
(三)二段式结果分析 |
二、三角函数迷思概念形成原因 |
(一)概念本身抽象性 |
(二)教师原因 |
(三)学生原因 |
第五章 促进三角函数迷思概念转变的教学策略 |
一、数学史认知分析策略 |
二、概念图策略 |
三、先行组织者策略 |
四、问题驱动教学策略 |
第六章 三角函数的教学设计 |
一、任意角的三角函数教学设计 |
二、两角差的余弦公式的教学设计 |
结论与展望 |
论文创新点 |
注释 |
参考文献 |
附录 |
攻读硕士学位期间所发表的学术论文 |
致谢 |
(3)启发式教学在平面向量课堂教学中的应用(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 问题的背景 |
1.2 研究目的及意义 |
1.2.1 研究目的 |
1.2.2 研究意义 |
1.3 国内外关于启发式教学的研究现状 |
1.3.1 国内研究现状 |
1.3.2 国外研究现状 |
1.4 研究内容及其方法 |
1.4.1 研究内容 |
1.4.2 研究方法 |
1.5 研究创新及拟解决的问题 |
1.5.1 研究创新 |
1.5.2 研究拟解决的问题 |
1.6 研究中存在的不足问题 |
第二章 启发式教学内容简介 |
2.1 启发式教学的概念及特征 |
2.1.1 启发式教学的概念 |
2.1.2 启发式教学的特征 |
2.2 启发式教学的理论依据 |
2.2.1 哲学理论基础 |
2.2.2 心理学理论基础 |
2.2.3 建构主义理论基础 |
2.2.4 人本主义理论基础 |
2.3 启发式教学的研究意义 |
第三章 平面向量实际教学的现状调查研究 |
3.1 学生测试卷的编制 |
3.1.1 问卷编制 |
3.1.2 编制意图 |
3.2 学生试卷结果 |
3.3 教师访谈 |
3.3.1 在课堂中抓住契机有效实施启发式教学 |
3.3.2 应用启发式教学可以扩展学生数学思维 |
3.3.3 学生数形结合能力有待增强 |
3.4 分析与思考 |
第四章 启发式教学在平面向量课堂教学中的具体应用策略及意义 |
4.1 平面向量知识分析 |
4.1.1 知识特点 |
4.1.2 数学核心素养 |
4.1.3 课程思政要求 |
4.2 启发式教学在平面向量课堂教学中的具体应用策略 |
4.2.1 课前准备阶段 |
4.2.2 课程实施阶段 |
(1)创设情境激发学生学习动机 |
(2)提出疑问分步引导学生思考 |
(3)把握教学时机深入启发学生 |
(4)展现探究过程深化学生思维 |
(5)加入变量问题训练解题思维 |
4.2.3 课堂小结与课后反思阶段 |
4.3 启发式教学在平面向量课堂教学中应用的意义 |
研究结论与展望 |
1.研究结论 |
2.研究展望 |
参考文献 |
附录1 学生问卷调查 |
附录2 教师访谈 |
附录3 平面向量基本定理教学过程 |
致谢 |
攻读学位期间研究成果 |
(4)初中生数形结合能力水平的调查研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究背景 |
1.2 研究问题 |
1.3 研究意义 |
2 文献综述 |
2.1 文献计量分析 |
2.2 数学学科能力测评的相关研究 |
2.3 数形结合的相关研究 |
3.数形结合能力的内涵及具体表现 |
3.1 数形结合能力的内涵 |
3.2 数形结合能力的水平划分 |
4 研究设计 |
4.1 研究对象 |
4.2 研究思路与研究方法 |
4.3 初中生数形结合能力水平测试卷的编制 |
4.4 初中生数形结合能力调查问卷的编制 |
5 初中生数形结合能力水平发展的现状分析 |
5.1 数据的收集与整理 |
5.2 测试结果的整理与分析 |
5.3 差异分析 |
5.4 本章小结 |
6 初中生数形结合能力水平现状的问题分析 |
6.1 学生数形结合主要表现调查问卷结果分析 |
6.2 学生数形结合能力测试卷典型错误分析 |
6.3 本章小结 |
7 提高初中生数形结合能力的教学建议 |
7.1 加强几何表征,提高数形结合理解能力 |
7.2 深度理解基础知识,提高数形结合迁移能力 |
7.3 强化模型思想,提高数形结合创新能力 |
7.4 以错题档案和课堂思考时间为切入点改善学与教 |
8 研究结论与反思 |
8.1 研究结论 |
8.2 研究不足 |
8.3 研究展望 |
参考文献 |
附录 |
附录一:数形结合能力评价指标专家咨询表 |
附录二:初中生数形结合能力水平测试卷 |
附录三:初中生数形结合能力主要表现学生调查问卷 |
后记 |
攻读硕士学位期间取得的科研成果清单 |
(5)高中生数形结合思想方法的应用现状研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
一、研究背景 |
二、研究目的 |
三、研究意义 |
(一)有助于教师优化教学方法 |
(二)有助于学生理解数学知识 |
(三)有助于学生数学思维能力的发展 |
(四)有助于学生更好地认识世界 |
第二章 文献综述 |
一、数形结合的产生与发展 |
(一)“数”与“形”概念的产生 |
(二)古代时期的数形结合 |
(三)近现代时期的数形结合 |
二、国内研究现状 |
(一)数形结合在解题中的应用 |
(二)数形结合在教学中的渗透及作用 |
(三)数形结合的认知心理研究 |
(四)文献综述总结 |
三、理论基础 |
(一)SOLO分类理论 |
(二)表征理论 |
(三)解题程序理论 |
第三章 对数形结合的基本认识 |
一、数形结合思想的解题原则 |
(一)等价性原则 |
(二)双向性原则 |
(三)简单性原则 |
二、数形结合的应用类型 |
(一)以形助数 |
(二)以数解形 |
(三)数形并重 |
三、数形结合思想方法在教材中的体现 |
(一)必修一 |
(二)必修二 |
(三)必修三 |
(四)必修四 |
(五)必修五 |
四、数形结合思想方法在高考中的体现 |
第四章 研究设计 |
一、研究问题 |
二、研究思路 |
三、研究对象 |
四、研究方法 |
(一)文献研究法 |
(二)调查法 |
(三)访谈法 |
五、研究工具 |
(一)调查问卷的设计 |
(二)调查问卷的信度与效度 |
(三)测试卷的编制 |
(四)测试卷对学生数形结合应用水平的划分 |
(五)教师访谈问卷的编制 |
第五章 研究结果的统计与分析 |
一、高中生对数形结合思想方法的理解情况 |
(一)高中生对数形结合思想方法的基本认识 |
(二)高中生数形转化能力的基本情况 |
(三)高中生应用数形结合思想方法的思维习惯 |
(四)高中生获得数形结合思想方法的来源途径 |
(五)调查问卷统计结果分析 |
二、高中生运用数形结合思想方法解题的水平分布 |
(一)集合 |
(二)函数 |
(三)数列 |
(四)解析几何 |
(五)三角函数 |
(六)不等式 |
(七)平面向量 |
(八)立体几何 |
三、测试卷各维度总体与对比分析 |
(一)总体分析 |
(二)各年级对比分析 |
(三)测试卷统计结果分析 |
四、教师访谈结果与分析 |
五、研究结论 |
第六章 数形结合思想方法的渗透策略 |
一、更新教学观念,增强渗透数形结合思想方法的教学意识 |
二、挖掘教材中蕴含数形结合思想方法的素材 |
(一)概念教学中的数形结合素材的挖掘 |
(二)命题教学中的数形结合素材的挖掘 |
(三)例题中的数形结合素材的挖掘 |
(四)习题中的数形结合素材的挖掘 |
三、注重数学三种语言的对应与转化教学 |
四、合理利用信息技术,加强学生的识图和作图能力 |
参考文献 |
附录1 学生调查问卷及测试卷 |
附录2 教师访谈问卷 |
攻读硕士学位期间发表的学术论文 |
致谢 |
(6)九年级学生函数模块解题错误纠正研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪言 |
1.1 研究背景 |
1.1.1 解题错误订正策略提出的现实性 |
1.1.2 解题错误存在的时代性与正常性 |
1.1.3 初中函数的重要性 |
1.2 核心名词界定 |
1.2.1 错误(error or mistake) |
1.2.2 错题(Wrong question or Wrong answer) |
1.2.3 数学解题错误(Math error) |
1.2.4 教学策略(Teaching Strategies) |
1.2.5 模型思想(Model idea) |
1.2.6 ACT-R理论(Adaptive Control Theory-Rational) |
1.2.7 调查研究(Survey Research) |
1.2.8 教育实验(Educational Experiment) |
1.3 研究的内容和意义 |
1.3.1 研究的问题 |
1.3.2 研究的内容 |
1.3.3 研究的意义 |
1.4 研究的思路 |
1.4.1 研究计划 |
1.4.2 研究的技术路线 |
1.5 论文的结构与说明 |
第2章 文献综述 |
2.1 文献收集 |
2.2 解题错误的相关研究 |
2.2.1 解题错误的归因 |
2.2.2 解题错误的分类 |
2.2.3 解题错误纠正策略研究现状 |
2.3 函数模块解题错误的相关研究 |
2.3.1 函数模块解题错误的原因及分类 |
2.3.2 函数模块解题错误的纠正策略 |
2.4 研究述评 |
第3章 研究理论与研究设计 |
3.1 研究理论——ACT-R理论 |
3.1.1 ACT-R理论的内容 |
3.1.2 ACT-R理论的教学启示 |
3.1.3 小结 |
3.2 研究设计 |
3.2.1 研究目的 |
3.2.2 研究对象 |
3.2.3 研究方法 |
3.2.4 研究工具及分析 |
3.2.5 研究的伦理 |
3.2.6 小结 |
第4章 九年级学生函数模块学习现状调查及分析 |
4.1 调查结果与数据分析 |
4.1.1 基本信息 |
4.1.2 学生对解题错误的认识分析 |
4.1.3 学生对解题错误分类的认识分析 |
4.1.4 学生在函数模块产生解题错误的原因分析 |
4.1.5 常规订正策略的现状分析 |
4.1.6 调查对象自述订正经历分析 |
4.1.7 调查对象提出的建议分析 |
4.2 调查的结论 |
第5章 函数模块解题错误的分类及具体体现 |
5.1 函数模块典型错误来源 |
5.2 函数模块典型错误的分类与分析 |
5.2.1 知识性错误 |
5.2.2 逻辑性错误 |
5.2.3 策略性错误 |
5.2.4 无意识错误 |
5.3 小结 |
第6章 基于ACT-R理论,函数模块解题错误纠正教学策略提出与检测 |
6.1 教学策略的提出 |
6.1.1 知识性错误——精致练习策略 |
6.1.2 逻辑性错误——熟能生巧策略 |
6.1.3 策略性错误——迁移与理解策略 |
6.1.4 无意识错误——检验反思策略 |
6.2 实验目的与设计 |
6.2.1 实验目的 |
6.2.2 实验设计 |
6.3 实验的过程 |
6.4 实验的结果与分析 |
6.4.1 教学策略对学生数学成绩的影响及分析 |
6.4.2 教学策略对每种错误类型错误率的影响分析 |
6.4.3 教学策略对学生养成订正习惯、形成题后反思能力的研究 |
6.5 小结 |
第7章 研究结论与思考 |
7.1 研究结论 |
7.2 研究的创新之处 |
7.3 研究的不足与反思 |
7.3.1 研究的不足之处 |
7.3.2 研究反思 |
7.4 研究展望 |
参考文献 |
附录A 初中生函数模块学习问卷 |
附录B 中测试卷:二次函数章节考试卷 |
附录C 后测试卷:函数模块章节考试卷 |
附录D 实验组对照组三次考试成绩 |
附录E 学生访谈提纲 |
攻读学位期间发表的学术论文和研究成果 |
致谢 |
(7)中国中学三角函数内容设置变迁研究(1950-2019) ——以人教版教科书为例(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
1.1 问题提出 |
1.2 研究目的及意义 |
1.2.1 研究目的 |
1.2.2 研究意义 |
1.3 文献综述 |
1.4 研究方法与思路 |
1.4.1 研究方法 |
1.4.2 研究思路 |
1.5 创新之处 |
第2章 三角函数内容编排概述 |
2.1 三角函数发展史简述 |
2.1.1 三角函数的起源与发展 |
2.1.2 中国古代的三角学 |
2.2 中国教科书中三角函数的名词术语 |
2.2.1 八线 |
2.2.2 三角比、三角比率 |
2.2.3 圆函数 |
2.3 学习苏联——编写统一教科书(1950-1957) |
2.3.1 编排背景 |
2.3.2 三角函数内容的结构安排 |
2.3.3 特点分析 |
2.4 自力更生——独立编写通用教科书(1958-1965) |
2.4.1 编排背景 |
2.4.2 三角函数内容的结构安排 |
2.4.3 特点分析 |
2.5 拨乱反正——编写实用性教科书(1977-1985) |
2.5.1 编排背景 |
2.5.2 三角函数内容的结构安排 |
2.5.3 特点分析 |
2.6 一纲多本——编写多样化教科书(1986-1995) |
2.6.1 编排背景 |
2.6.2 三角函数内容的结构安排 |
2.6.3 特点分析 |
2.7 全面改革——编写新时代教科书(1996-2019) |
2.7.1 编排背景 |
2.7.2 三角函数内容的结构安排 |
2.7.3 特点分析 |
2.8 小结 |
第3章 三角函数定义与相关概念的内容设置之变迁 |
3.1 初中三角函数定义与相关概念内容设置变迁及特点 |
3.2 高中三角函数定义与相关概念内容设置变迁及特点 |
3.2.1 高中三角函数定义的内容设置变迁及特点 |
3.2.2 高中弧度制的内容设置变迁及特点 |
3.2.3 高中其他相关概念的内容设置变迁及特点 |
第4章 三角函数的图象与性质内容设置之变迁 |
4.1 三角函数的图象与性质内容结构设置变迁及特点 |
4.2 三角函数图象的内容设置变迁及特点 |
4.3 三角函数性质的内容设置变迁及特点 |
4.4 反三角函数的内容设置变迁及特点 |
4.5 小结 |
第5章 诱导公式内容设置之变迁 |
5.1 诱导公式内容结构设置变迁及特点 |
5.2 小结 |
第6章 三角函数式的变换内容设置之变迁 |
6.1 三角函数式的变换内容结构设置变迁及特点 |
6.2 同角三角函数的关系内容设置变迁及特点 |
6.3 两角三角函数式的变换内容设置变迁及特点 |
6.4 小结 |
第7章 三角函数应用的设置与数学史融入之变迁 |
7.1 正、余弦定理设置之变迁及特点 |
7.2 例题设置之变迁 |
7.2.1 初中例题数量编排变迁及特点 |
7.2.2 初中例题运算难度编排变迁及特点 |
7.2.3 高中例题数量编排变迁及特点 |
7.2.4 高中例题运算难度编排变迁及特点 |
7.3 习题设置之变迁 |
7.3.1 初中习题题型编排变迁及特点 |
7.3.2 初中综合型习题编排变迁及特点 |
7.3.3 高中习题题型编排变迁及特点 |
7.3.4 高中综合型习题编排变迁及特点 |
7.4 小结 |
7.5 三角函数章节中数学史融入变迁及特点 |
7.5.1 初中教科书三角函数章节中数学史融入变迁及特点 |
7.5.2 高中教科书三角函数章节中数学史融入变迁及特点 |
7.5.3 小结 |
第8章 研究结论与展望 |
8.1 研究结论 |
8.2 启示与借鉴 |
8.3 进一步的研究 |
参考文献 |
致谢 |
攻读学位期间科研成果目录 |
(8)八年级学生几何直观能力的现状调查及培养策略研究 ——以天水市YF中学为例(论文提纲范文)
摘要 |
Abstract |
1 问题的提出 |
1.1 研究的背景 |
1.1.1 几何直观在数学课程标准中作为核心概念 |
1.1.2 几何直观在数学各领域中的重要作用 |
1.1.3 几何直观在中小学教学策略上的研究 |
1.1.4 测评和培养初中阶段几何直观能力的要求 |
1.2 研究的问题 |
1.3 研究意义 |
1.3.1 理论意义 |
1.3.2 实践意义 |
1.4 概念界定 |
1.4.1 直观 |
1.4.2 几何直观 |
1.4.3 几何直观能力 |
2 文献综述 |
2.1 文献检索 |
2.1.1 文献数量分布 |
2.1.2 发布期刊分布 |
2.1.3 与几何直观相关学科研究 |
2.2 国外研究现状 |
2.2.1 图形视觉化 |
2.2.2 几何直观概念 |
2.2.3 心理学角度解释几何直观 |
2.2.4几何直观测评实验 |
2.3 国内研究现状 |
2.3.1 对几何直观概念的认识 |
2.3.2 几何直观的应用策略 |
2.3.3 几何直观能力测评方式 |
2.3.4 几何直观能力培养策略 |
2.4 文献研究述评 |
3 研究过程与方法 |
3.1 研究过程 |
3.1.1 确定研究对象 |
3.1.2 问卷及测试卷编制 |
3.1.3 测评实施 |
3.2 研究方法 |
3.2.1 文献分析法 |
3.2.2 教育测试法 |
3.2.3 访谈法 |
3.2.4 课堂观察法 |
4 结果及分析 |
4.1 测试结果分析 |
4.1.1 八年级学生几何直观能力整体分析 |
4.1.2 各班级几何直观能力分析 |
4.1.3 具体几何直观能力指标分析 |
4.2 教师访谈结果分析 |
4.2.1 教师对几何直观的了解程度 |
4.2.2 学生运用几何直观存在的障碍 |
4.2.3 培养学生几何直观能力的方式 |
5 讨论 |
5.1 八年级学生运用几何直观能力障碍分析 |
5.1.1 学生图感低 |
5.1.2 对代数知识几何背景不重视 |
5.1.3 学生分析能力不强 |
5.1.4 学生缺少对直观模型的发现、理解、记忆 |
5.1.5 教师培养学生几何直观能力意识淡薄 |
5.2 八年级学生几何直观能力现状 |
5.2.1 八年级学生几何直观能力处于中等水平 |
5.2.2 八年级学生对图形的认识能力较强 |
5.2.3 八年级学生利用图形分析问题能力偏弱 |
5.3 八年级学生几何直观能力培养策略 |
5.3.1 注重作图、识图、构图训练,培养学生图感 |
5.3.2 强化实践操作,培养学生空间观念 |
5.3.3 注重一题多解,发展学生分析能力 |
5.3.4 渗透数学文化,增加教学趣味性 |
5.3.5 重视几何直观观念,更新教学理念 |
6 研究结论 |
6.1 八年级学生几何直观能力的现状水平 |
6.2 八年级学生运用几何直观的障碍 |
6.3 培养学生几何直观能力的策略 |
7 研究不足与展望 |
7.1 研究不足 |
7.2 展望 |
参考文献 |
附录 |
附录一 :八年级学生几何直观能力预测试题 |
附录二 :八年级学生几何直观能力正式测试题 |
附录三 :教师访谈提纲 |
学位论文数据集 |
致谢 |
(9)中小学数学螺旋式上升内容的比较与分析(论文提纲范文)
摘要 |
Abstract |
1 引言 |
1.1 选题的背景 |
1.2 研究的理论基础 |
1.2.1 认知发展理论 |
1.2.2 课程内容编排理论 |
1.3 研究的对象 |
1.4 研究的思路与方法 |
1.5 研究的内容及意义 |
2 相关文献综述 |
2.1 有关概念的界定 |
2.1.1 螺旋式上升 |
2.1.2 螺旋式上升课程 |
2.2 数学中螺旋式上升内容编排的研究 |
2.3 数学中螺旋式上升教学的研究 |
3 几何中螺旋式上升内容的比较与分析 |
3.1 采用并体现螺旋式上升的内容 |
3.2 采用但未体现螺旋式上升的内容 |
3.3 不宜采用螺旋式上升编排的内容 |
4 代数中螺旋式上升内容的比较与分析 |
4.1 采用并体现螺旋式上升的内容 |
4.2 采用但未体现螺旋式上升的内容 |
4.3 不宜采用螺旋式上升的内容 |
5 统计与概率中螺旋式上升内容的比较与分析 |
5.1 采用但未体现螺旋式上升的内容 |
5.2 不宜采用螺旋式上升的内容 |
6 总结与建议 |
参考文献 |
附录 |
致谢 |
(10)数学构造思想方法的理论探索与现状调查(论文提纲范文)
摘要 |
Abstract |
1. 绪论 |
1.1 研究的背景 |
1.1.1 数学学习的特点 |
1.1.2 数学解题的重要性 |
1.1.3 解题离不开数学思想方法 |
1.1.4 教学同样需要数学思想方法 |
1.1.5 构造思想方法具有重要的地位 |
1.2 研究的价值与意义 |
1.3 研究的内容 |
1.4 研究的方法 |
1.5 研究的框架 |
2. 文献综述 |
2.1 相关概念 |
2.1.1 数学思想方法 |
2.1.2 构造思想方法 |
2.2 国外研究现状 |
2.3 国内研究现状 |
3. 理论的探索 |
3.1 构造法的解题理论探索 |
3.1.1 构造法的解题特点 |
3.1.2 构造法的解题原则 |
3.1.3 构造法的解题策略 |
3.1.4 构造法解题策略间的关系 |
3.2 构造法的教学理论探索 |
3.2.1 构造法的教学意义 |
3.2.2 构造法的教学原则 |
3.2.3 构造法教学案例设计 |
4. 调查的设计与实施 |
4.1 调查的设计 |
4.1.1 测试对象的选择 |
4.1.2 测试卷的设计 |
4.1.3 评价标准的制定 |
4.2 调查的实施 |
5. 调查结果的总结与分析 |
5.1 测试卷数据分析 |
5.1.1 测试数据的编码 |
5.1.2 测试对象的基本信息统计 |
5.1.3 测试卷答题情况统计分析 |
5.1.4 测试数据的分布分析 |
5.1.5 测试数据的差异性分析 |
5.1.6 测试数据的相关性分析 |
5.2 个例访谈分析 |
5.3 调查结果总结 |
6. 研究结论与建议 |
6.1 研究结论 |
6.1.1 理论探索的结论 |
6.1.2 现状调查的结论 |
6.2 建议 |
6.2.1 对学生的建议 |
6.2.2 对教师的建议 |
7. 总结与展望 |
7.1 总结 |
7.2 展望 |
参考文献 |
附录1 |
附录2 |
致谢 |
四、高中数学平面直角坐标系下的图形变换及常用方法(论文参考文献)
- [1]高中生三角函数概念理解水平调查研究[D]. 陈晓娅. 天津师范大学, 2021(09)
- [2]高一三角函数迷思概念的诊断与转变策略的研究[D]. 杜超. 哈尔滨师范大学, 2021(08)
- [3]启发式教学在平面向量课堂教学中的应用[D]. 程旭. 延安大学, 2021(11)
- [4]初中生数形结合能力水平的调查研究[D]. 贾艳艳. 河北北方学院, 2021(01)
- [5]高中生数形结合思想方法的应用现状研究[D]. 荣媛媛. 哈尔滨师范大学, 2021(08)
- [6]九年级学生函数模块解题错误纠正研究[D]. 张嫌. 云南师范大学, 2021(08)
- [7]中国中学三角函数内容设置变迁研究(1950-2019) ——以人教版教科书为例[D]. 张露露. 内蒙古师范大学, 2021(08)
- [8]八年级学生几何直观能力的现状调查及培养策略研究 ——以天水市YF中学为例[D]. 胡雨. 天水师范学院, 2020(12)
- [9]中小学数学螺旋式上升内容的比较与分析[D]. 邓艳梅. 华中师范大学, 2020(01)
- [10]数学构造思想方法的理论探索与现状调查[D]. 方玉泉. 华中师范大学, 2020(01)